DIFFUSION THEORY OF CHEMICAL REACTIONS
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1, Introduction. The theory of Brownian motion of a particle in a medium [1] is often used in kinetics.
In particular, it is employed in the theory of electron-ion recombination [2}, chemical reactions [3], moder-
ation of neutrons [4], and phase transformations [5]. All of these problems are described by similar kinetic
equations,

In this paper, based on a unified approach [6, 7] to the solution of linear kinetic equations, we examine
the diffusion theory of chemical reactions, Its basic assumptions were formulated in [4]. The starting points
in the theory are the equations of motion of reacting particles in the presence of a random force, originating
from the action of the surrounding medium on the reagents. The state of the system in this model is deter-
mined by the values of the velocity v and coordinate x and is represented by a point in the phase plane., The
chemical reaction is viewed as the wandering of the image point in the phase plane out of the region corre-
sponding to the initial substances into the region corresponding to the final substances.

The random process corresponding to the motion of the image point in the phase plane is described by
the kinetic equations of the Fokker— Planck type for the probability density. Even for the simplest bimolecular
reaction, the procedure of integrating this equation is very complicated. The problem of overcoming the poten-
tial barrier is examined in [8]. It was solved assuming that the gas temperature is small compared to the
height of the potential barrier. In this case, the flux of the probability density over the top of the potential
barrier can be viewed as a constant and it is possible to reduce the problem to one of solving the stationary
kinetic equation, Later, Kramers' theory was updated [9-12].

A more rigorous approach to calculating the rate constants of chemical reactions depends on the non-
stationary solution of the kinetic equation, Thus'", in [13], for an interaction potential of reacting particles with
a special form, the solution was sought in the form of a series in terms of the characteristic functions and
characteristic values of the problem. However, in view of the difficulties related to obtaining the character-
istic values and the characteristic functions for an interaction potential of arbitrary form, the results of the
work have not been generalized.

In order to find the nonstationary solutions, the method of quasistationary distribution functions (QDF)
can be used [7]. According to this method, the distribution function is sought in the form of a series in powers
of a specified evolution operator E. The most interesting stage in establishing equilibrium is described by a
distribution function that takes into account only the terms of zero and first order in the operator E, In what
follows, we will obtain the rate constant of a bimolecular chemical reaction for an arbitrary interaction poten-
tial and arbitrary relation between the gas temperature and height of the potential barrier.

Following Kramers, we will make the transition from the equations of motion of particles in a bimolec-
ular reaction to the kinetic equation for the probability density distribution function
a0 K(a) ep 3 ] T ap
= v V(v ) a.1)
where px, v, t)dxdv is the probability for finding the system at time t in a state with coordinates in the vicinity
of the point (x, v) in the phase plane; K{x) = —dU/dx [U(x) is the interaction potential for the reacting particles];

u is the reduced mass of the reacting particles; v is the effective coefficient of friction of the surrounding me-
dium; T is the temperature of the medium in energy units,

Reducing the problem of the interaction of two reacting particles in the usual way to the problem of the
motion of a single particle with reduced mass in the field U&) in the presence of a random force, it is possible
to express the effective coefficient of friction in terms of the coefficients of friction of the reagents

= (Bt ()

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 83-92, Sep-
tember-October, 1981, Original article submitted July 22, 1280.

664 - 0021-8944/81/2205- 0664507.50 ©1982 Plenum Publishing Corporation



where m; and m, are the masses of the reacting particles; vy, and v, are their coefficients of friction.
The statjonary solution of Eq, (1,1) is the Maxwell— Boltzmann distribution function
Pe ~exp (—p¥2T — U/T).
We introduce into the analysis the moments of the distribution
M, = 5 pvrdu.

Multiplying the left and right sides of (1.1) by v0 and integrating with respect to v, taking into account

the boundary conditions v7p, v”—g% e = 0, we obtain the moment equations
N
oM, K aM 41 vT
= n li Moy — —2 — myMa 4 (n— 1) 2 My,

wheren=10,1,2,... Moy =M_, = 0),

Let us examine the equations for the moments M, and M;. For time t > v, the dynamics for establish-
ing equilibrium are simplified, since the velocity probability distribution function is close to Maxwellian, This
permits, first of all, solving the stationary equation for the moment M, and, second, expressing the moment
M, in terms of My, using their equilibrium ratio:

MyMy = (My/My), = T/p.
Expressing the moment M, in ferms of M, and assuming that the coefficient of friction does not depend
on the reaction coordinate x, we arrive at the Smoluchowski equation

oM, o (. oM, v
57 = (W) 17’9?<T az '—KM")‘ @.2)

The rate of the chemical reaction is the probability that the system per unit time will turn out to be in a
state with the coordinate greater than some fixed value x, This quantity is numerically equal to the flux of the
probability density or the moment

M, = (uy)" KM, — TOM,/dz).
Thus, the moment of the distribution M, is the basic quantity sought.
We will solve Eq. (1.2) over a finite segment [0, /] with initial and boundary conditions of the form

Molimo = 8z — zo); 1.3)
ﬂj][x:(] = 07 Molx=l = 0. (1.4)

The first boundary condition causes the probability density flux to vanish at the point x = 0, since at this
point the repulsive force between the reacting particles increases indefinitely. As the reacting particles move
apart to a distance of the order of the mean free path length, they themselves become particles in the sur-
rounding medium. For this reason, the second boundary condition corresponds to an absorbing boundary at
the point x =

L=1+1, = (oN)™, 0 = 6105/(61 + 0v),

where [y and /; are the mean free path lengths for the reacting particles; ¢, and o, are their collision cross
sections; and N is the particle density in the medium,

2. Solution of Smoluchowski's Equation. Kramers' Equations. Let us make the substitution

M, = fexp (—U/T). 2.1)
Substituting (2.1) into (1.2) leads to the equation
UNO T @ AR
eXp(_Tj_at_—W‘ﬁ[eXp(“T)—tE]' 2.2)

Integrating (2.2) twice with respect to the coordinate taking into account the first boundary condition 1.4,
we obtain

f =1 -+ Ef, @2.3)

where f; = {&,, t), while the evolution operator is defined by the equation
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x x
~ 1y , [ T S LR
E= —%_S‘ dz’ exp (-[——) \ dx e;\p{\-—T ) —
LA 0
We solve Eq. (2.3) by the method of successive approximations, at the first step of which we operate
on the function f, by the operator E. As a result, we represent the solution as a series in powers of the oper-
ator £ or a series in terms of the derivatives of the parameter f

2

' - . af, A%,
f=fot Efo+ Byt ... =fotPu@) - +B2) —5 + ..y @.4)
where
=—Tv—f dz e*ip(?)jdx”eXP(—%)ﬁ,z_z, Bo=1. 2.5)
g []

Terms with high order derivatives are important initially, Then, they decrease in importance and, be-
ginning at some time, in (2.4) it is possible to consider only a finite number of terms [6, 7]. The distribution
function, obtained by truncating the series (2.4) and including the n-th order time derivative, has been named
the n-th order quasistationary distribution function (QDF). The time variation of the parameter f, is determined
by substituting the QDF into the second boundary condition (1.4). As a result, an ordinary differential equation
for f, with constant coefficients arises

fo +B1 (D) df + . ”l‘ﬁn(b =9 2.6)

dt"
The general solution of (2.6) contains n integration constants. We now substitute the n-th order QDF into

the equation for the moments of the initial distribution function (1.3)

!
§ 3, limgzmdz = 27 @.7)

0

Settingm=0,1,..., @a—1), we arrive at a system of linear algebraic equations, from whose solution
we find the values of the integration constants. :

We limit ourselves to examining the first order QDF; integrating (2.6) taking into account (2.7) gives
¢
fo=cexp (——;); (2.8)
61 (l) - Bl (.‘L‘)

fe. )=~ :
fexp (‘ —r‘) (B, () — B, ()] da

0

exp | — -i—) (2.9)

where the characteristic time for the variation of the distribution function is
' T = B,(). 2.10)
For times t «< 71, the distribution function does not depend on time and gives a stationary flux M, of the

probability density, determining the rate of the chemical reaction. Changing the order of integration in the
denominator of Eq. (2.9) we have :

Mlz__T_eXp(_ J_J_)_"J‘.ZL : g () 2.11)
(5 exp(%) & (z) dz

where g(z) = jexP(— %) dz'.

Equation (2.11) was obtained within the secope of the diffusion model and requires that the time 1,4] be-
tween successive collisions, which the reaeting system undergoes, is short compared to the characteristic
time for the change in the distribution function [3], i.e.,

T T (2.12)
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In addition, Eg. (2.11) is limited by the limits of applicability of the first order QDF. Substituting 2.8)
into (2.4), it is evident that in the given series the signs alternate and the terms decrease in absolute magni-
tude and, therefore, the series converges, The error arising in replacing the exact sum of the series by its
partial sum in the corresponding first order QDF is small if the inequality

B1(D)B1(D) — B1(@)] > Palw) (2.13)
is satisfied.

It is evident that (2.13) is satisfied for values of the coordinates that are not very close to the boundary
= I, Inequalities (2.12) and {2.13) will be discussed below for a specific interaction potential.

We will now examine the problem in which the state of the system of reacting particles passes over the -
potential barrier and we will show that Eq. (2.11) for gas temperatures T much less than the height of the bar-
rier Q goes over into Kramers' equation [8]. Let the interaction energy U) have the form shown in Fig. 1
and let the system be found initially in a state with coordinate x, We set x =x; in (2.11). The main contribu-
tion to the integral in the numerator in (2.11) comes from the region near the point x4, while in the denomi-
nator it comes from near the point x;, Representing the potential in the vicinity of these points in the form

2
40}
P (.Z‘ — xl)E,

U2) = 5 po? (& — 2,05 Ulx) =0 —

we obtain

oo

2
8 () j" eXp[“ ;;) (z —1'0)2] dz = m—x( 23;7‘ )1/21

-

4

SGXP( - & (2) dz o g () 5 exp[——- —-‘i“’—(x—xl)}dxzgz(xl)exp(%>( o) ( 2nT )1/2.

—~o0

From here the probabilities sought equal
M, = (00'/2ny) exp (—Q/T), T < 9. 2.14)

For the potential which is symmetric relative to the point x4

1
pet@ — g, sy,
BES
2

C‘
v
/——"“—\

po? (z 4+ x; — 22,8, T =14,

the calculation of the probabilify for passing over the potential barrier is similar to the preceding case, The
numerator in (2.11) retains its previous form. The main contribution to the integral in the denominator in
(2.11) again comes from the region near the point x;. Carrying out the integration, we obtain

t 2
2Tg (.2:) 0 -
\exp( )g (=) xNWexp(—T—), ¢ =U(xy),
¢
2 (2.15)
o [ 0 2 { _Q_)
= () Cem (- &), 70

Equations (2.14) and (2.15) exactly coincide with Kramers' results [8].

3, Dissociation of Diatomic Molecules. Within the scope of the diffusion model, it is possible to examine
as well the problem of the dissociation of molecules, We will solve this problem for the interaction potential
llustrated in Fig. 2. Let the system be initially found at the bottom of the potential well with coordinate Xq.
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As a result of the action of the surrounding medium on the molecule, it dissociates. We will assume that the
dissociation process is complete if the distance between the reacting particles becomes of order of the mean
free path length in the surrounding medium. For this reason, in Eq. (2.11), we setx = I,

Let us first examine the case of relatively low gas temperatures, satisfying the inequality
exp (—D/T)! <« zy, 3.1)
where D is the dissociation energy of the molecules; x, is the characteristic distance beginning with which
the interaction potential is practically constant and equals the dissociation energy. We note that for gaseous
media, x; < L
The main contribution to the integral in the numerator in (2.11) in view of inequality (3.1) comes from

the region of integration from zero to x;, while that in the denominator comes from the region from x, to I,
For this reason,

[
’, \

g(l)=g(z) ~~ j exp[— —%(x — xu)z} dr = 07! (Z—gT—)l/z, 5 exp(%) §*(z) dz = exp <%§gg ()1

oo 0

where w is the vibrational frequency of the molecule near the equilibrium position.
From here, the equation for the dissociation rate constant has the form

M. (1 1/2
Lo (2 (2] o =

Ny T

The dissociation constant, as in the model of single-quantum step-like excitations [3], is proportional
to the vibrational frequency of the molecule v in the ground electronic state, as well as to the gas kinetic num-
ber of collisions z, = a(27rT/u)1/2. The temperature dependence of the pre-exponential factor in (3.2) is de-
termined by the function v = ¥(T) and can vary for different temperature intervals,

An estimate of the characteristic dissociation time according to Eq. (2.10) gives
T = (KN)-.

The diffusion approximation is applicable to the calculation of the dissociation constant, if (2.12) is satis-
fied. Assuming that

Teol ™~ (UC._U_N)VE _1} ~ (T/m')i/zv

where 0, is the cross section for a collision between the dissociating molecule anda particle inthe medium, and
m is their reduced mass, we obtain from (2.12)
sy (———27”"‘ )1"‘2 exp (~ —1—’;) < 1 3.3)

o, ¥ w

Inequality (3.3) imposes an upper limit on the temperature of the medium,

We will now study the condition (2.13) for the applicability of the first order QDF. For this, to within a
factor py/ T, we present the following estimates:

!
D
B )~ | exp( L) g (@) dz = exp (2] g (@) L,
*o
g \ , B (U U 2
fr () ~§ eXp(—g—}g(x )dx <eXpLT) zg(z); exp <?)“7
o
x x’ . x x? 2 , s

nor~ oo Effacen o< arowl §) For 227 o) 51
x 0 x ’

g )

Substituting in (2.13) for ;&) and B,) their highest values, we will thereby investigate the stronger in-
equality

exp (7|8 (@) 2 [exp (27 g (@0l — 5 () 2] > 5w,
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For x =x,, this inequality is obviously satisfied and is violated only for values of the coordinates close
to the boundary value. For x >x;, we once again make the inequality stronger, setting on the right side x = L

exp (DI T)gXz)l Az > (1/24)1%,
where Ax = [ —x,
From here, we find the size of the region near the boundary for which (2.13) is violated:
Az ~ (B/g¥z,) )exp (—D/T).

Since the dissociation rate is equal to the flux of the probability density through the boundary x = I, the
error in determining the constant from Eq. (3.2) will not be large if Ax < or

(2npv/o?N*T)exp (—DIT) < 1. (3.4)

Inequality (3.4), in contrast to (3.3), imposes limitations on the density of the surrounding medium as
well,

Let us now turn to the case of high gas temperatures, satisfying the condition
exp (—DI/T > z,. (3.5)
On the strength of inequality (3.5), the numerator in Eq, 2.11) at x = [ equals
g(l) = exp (—DIT) L.

Estimates show that just as for low temperatures, the main contribution to the integral in the denomina-
tor in (2.11) comes from the region of integration over the segment [x,, []. For this reason

jexp(%> g {x)dx = exp (-‘?—) {g (zy) - exp <—— —;11) (z— acl)]2 dz = ? exp (— —?—)

In this case, we use the obvious inequality g < x; and (3.5). Substituting these expressions into (2,11),
we obtain an equation for the dissociation rate constant

K = 3To*Nipy. , (3.6)

In contrast to the low-temperature case, here the constant is proportional to the density of particles
in the medium and does not depend on the vibrational frequency of the molecule near the equilibrium position.
The temperature dependence is also determined by the form of the function v = y(T).

A calculation of the characteristic dissociation time (2.10) leads to the equation
%= (%—KN>_1.
Let us now discuss the limits of applicability of Eq. (3.6). Condition (2.12) for the correctness of using
the diffusion approximation gives
(20 yo ) (mT/ud) 2 N <« 1. (3.7
For gaseous media, inequality 3.7) is almost always satisfied,

Let us examine condition (2.13) for applicability of the first order QDF. For high temperatures {(3.5),
estimates of 8{(x) and B, (x) are the same as for low temperatures, Only the value of 8;(/), in the integral for
which the region x; to I gives the main contribution, will change:

l2

Py (1) ~ exp (—l[)') [g (z,)+exp (— —?—) (z— xl)] dr = -

R

Substituting into (2.13) leads to the stronger condition
Plexp (—U/TY* — a1 > (1/6)x*. (3.8)
For x ~xy, (3.8) is satisfied. For x > xy, we have

exp (—DIT) — 2> (1/6)2, z = (a/I)2 (3.9)
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We now require that the left part of (3.9) be at least six times greater than the right side, Then, we arrive
at the inequality

22 + 3 —exp (—D/T) < 0,
whose solution gives .
5 << [1/4 4 exp(—D/T) /% — 1/2 ~ exp(—D/T)

or
z < exp( — D/2T)1.

The size of the region nearest the boundary where condition (2.13) breaks down equals

Az = l[1 — exp (—D/2T)1.

Equation (3.6) will correctly determine the order of magnitude of the constant, if Ax £ 1/2. From here,
we obtain the condition for the temperature of the medium

T>Df2ln2 =072 D.

In calculating the integral g(x,) in the problem of dissociation with relatively low temperatures of the
medium, a parabolic interaction potential U(x) was used near the equilibrium position. This approximation
corresponds to independent harmonic vibrations and rotation of the molecule in the center of mass system of
the reacting particles. Deviations from the parabolic law arise as a result of taking into account anharmonicity
of the vibrations and their interactions with rotation. In this case, the interaction potential near the equilib-
rium position can be represented in the form [14]

U (2) = = poted (8 — ot + BEY, (3.10)

where £ =x/x;— 1; @ and 8 are some molecular constants, related to the rotational constant of the molecule,
anharmonicity, and the vibrational—rotational coupling constants [14].

We will calculate the integral gx,) for the potential (3.10) and find corrections to the dissociation rate
constant (3.2). Substituting (3.10) into the equation for g(x,), we obtain
K o’ " 2
g’(xl) = s exp»[ ——= L(E —al® [524)]03:52 j exp(—— —%EJT— xz)
o -

00

K 2
X (1 LAy —%—Azxe)(i — Balydx = 5 exp| — ”—0} xz)

12
X <1 — Bat -%—;—Agﬁ)dx = w*l( ZET) {1 + Tz (185*062 m-}ﬁ)]

{0 po’z)

From here, Eq, (3.2), taking into account the anharmonicity of the vibrations and their interactions with
rotation, takes the form

T/ )72 D
-]
Jlale - B
Y[H oy (5 ﬁ)J

K=

4, Calculation of the Constants of Specific Reactions and Comparison with Ex’p;erimental Results, Let us
calculate the constants of some dissociation reactions, estimating the frictional coefficient from Stokes' equa~
tion

y; = brnam/m; (i =1, 2),
where g; is the radius of the i-th reacting particle; m; is its mass; and 7 is the temperature~dependent coef-
ficient of viscosity of the medium.,

We will assume that the cross sections for collisions between the reacting particles and particles in the
surrounding medium equal the geometric values

0; = n(a; + o) (=1, 2),

where « is the radius of a particle in the surrounding medium,
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We first examine the dissociation reaction for oxygen in argon
0, +Ar=0-+0 + Ar

with the temperature of the surrounding medium T = 1000°K and the viscosity coefficient for argon at the tem-
perature indicated 5 = 5.5-107% g-ecm~!'-sec™! [15]. For the calculation, we used the following data: a; = a, =

0.06 nm [16], a = 0.15 nm [16], v = 1580 cm~! [16] (for the ground electronic term of the oxygen molecule). As
a result of calculations using Eq. (3.2), the theoretical value of the pre-exponential factor equals 2.2 -10" cm?.

mole™ - sec™!, The experimental value is (1-2.4) - 10" cm® - mole™' - see™! [17].
For the dissociation of a hydrogen molecule in argon
H, - Ar=H + H 4+ Ar

with parameters T = 1300°K, 1 = 6.16-10™% g-em™ +sec™! [15], a; = @, = 0.04 nm [16], & = 0.15 nm, v = 4400
cm”! [16], the theoretical value of the pre-exponential factor in (3.2) is 1.9~ 10" em® - mole~!+sec™! and the

experimental value is 2.3 10'% cm® - mole™ - sec! {17].

For the reaction
H, + H, = H +H -+ H,

with parameters T = 1300°K, 7 = 2.35-10"% g~ cm~!. sec™! [15], a; = a9 = 0.04 nm, a = 0.11 nm [16], v = 4400
cm~!, the theoretical value of the pre-exponential factor in (3.2) is 3.1-10' cm’- mole™!-sec~! and the ex-

perimental value is 8.2 -10' cm? - mole~!-sec™! [17].

Exchange reactions such as

A+ BC=AB+C
can also be investigated within the scope of the diffusion model,

In the general case, the calculation of the constant for this reaction must depend on the results of the
problem of the interaction of three particles in the presence of a random force. In this case, it is necessary
to integrate a higher order Fokker— Planck equation in contrast to (1.2). The problem can be simplified if it
is assumed that the exchange reaction proceeds with the formation of a bound complex ABC. Then, the exchange
reaction can be viewed as the association of particles A and BC in the molecule ABC and, then, the dissocia-
tion of the molecule ARBRC into particles AB and C. Thus, for a number of types of chemical reactions, the
approach examined here gives the practical possibility of calculating the constants,

We note that the limits of applicability of the diffusion model are also determined by the classical nature
of the approach. In particular, the de Broglie wavelength must be small compared to the characteristic dis~
tance over which the interaction varies. In this sense, the equations obtained are not applicable to calculating
the reaction constants for reactions that cccur with a change in the electronic state of the reacting particles.
Such reactions must be described using a quantum mechanical analysis,
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DETERMINATION OF THE DIMENSIONS OF THE SATURATION
ZONE FOR INFILTRATION FROM A CHANNEL WITH A
SHALLOW WATER DEPTH

E. N. Bereslavskii and L. A. Panasenko UDC 551,491.,5

A hydrodynamic solution has been considered [1-4] for the planar stationary case of a freshwater lens
established by infiltration in accordance with Darcy's law from a channel involving the displacement of saline
groundwater from the channel zone, It is assumed that the depth of water in the channel is infinitely shallow
and that the flow factor that compensates for the loss from the channel is evaporation from the free surface,
Here we examine infiltration from a channel into a layer of homogeneous isotropic soil of thickness T with a
horizontal impermeable layer underneath, This case is a limiting one for the above problem when the density
of the saline water increases without limit, The solution is found as in [1-4] by the method of [5], which is
based on the analytical theory of ordinary differential equations. The canonical region is taken as the region
for which the characteristics of the filtration flow can be derived in closed form in terms of certain special

functions.

In view of the symmetry of the infiltration region we restrict consideration to the right-hand half, which
is shown schematically in Fig. 1. The bottom of the channel is represented by a horizontal line of length 21,
With the coordinate system shown in Fig. 1, we locate the plane of potential comparison in the plane y = 0, and
then the following conditions are obeyed at the boundary of the infiltration region:

y=0,¢, =0 on AD, z = 0,9, =000 AB,y = T,9, =0 on BC,

1
@, 1y =0, ¢, + e,z — e[, on(CD, 1)

where wy = @p + i is the complex filtration potential referred to the filtration coefficient, with ¢, the re~
duced potential for the filtration rate and . the reduced current function, while z =x + iy is the complex co-
ordinate in the infiltration region and &, is the reduced evaporation rate,

As the auxiliary region we take half the plane of w in Fig. 2, In the method used here, the functions dw/
dw and dz /dw are unknowns to be determined as the solutions to a certain linear differential equation of the
Fuchs class with regular singular points. We first consider the behavior of the functions dw /d¢ and dz /dg,
where ¢ is the upper half-plane, and we find that the characteristic parameters of these functions near the
singular points have the following values: near point A (£ =—a)1/2, —1/2), near point B (£ = 0)1/2, 0),
near point C (¢ =1)(w/2—-1/2, —v/2—1/2), and near point D (£ = «)(3/2, 2), where v =1 — 2/m arctanvVe,,
and the singularity at point ¢ =—a can be eliminated.

The solution that satisfies the conditions of (1) takes the form

do Vl: sh vw dz ch v @)

dw T Todw Veblw tfachln

1/sh2 wa ch’w

where A is some real constant.

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 92-94,
September-October, 1981. Original article submitted June 25, 1980,
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